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The Richtmyer-Meshkov instability (RMI) is experimentally investigated in a vertical
shock tube using a broadband initial condition imposed on an interface between a helium-
acetone mixture and argon (A ≈ 0.7). The interface is created without the use of a
membrane by first setting up a flat, gravitationally-stable stagnation plane, where the
gases are injected from the ends of the shock tube and exit through horizontal slots at
the interface location. Following this, the interface is perturbed by injecting gas within
the plane of the interface. Perturbations form in the lower portion of this layer due to
the shear between this injected-stream and the surrounding gas. This shear layer serves
as a statistically-repeatable broadband initial condition to the RMI. The interface is
accelerated by either a M = 1.6 or M = 2.2 planar shock wave, and the development of
the ensuing mixing layer is investigated using planar laser-induced fluorescence (PLIF).
The PLIF images are processed to reveal the light-gas mole fraction by accounting for
laser absorption and laser-steering effects. The images suggest a transition to turbulent
mixing occurring during the experiment. An analysis of the mole-fraction distribution
confirms this transition, showing the gases begin to homogenize at later times. The scalar
variance energy spectrum exhibits a k−5/3 inertial range, providing further evidence for
turbulent mixing. Measurements of the Batchelor and Taylor microscales are made from
the mole-fraction images, giving ∼150 µm and 4 mm, respectively, by the latest times.
The ratio of these scales implies an outer-scale Reynolds number of 6-7×104.

1. Introduction

A shock wave passing through an interface between two densities will deposit vor-
ticity on interfacial perturbations. This interaction, known as the Richtmyer-Meshkov
instability (RMI) (Richtmyer 1960; Meshkov 1970), leads to the unbounded growth of
perturbations and can result in turbulent mixing. The RMI is akin to the Rayleigh-Taylor
instability (RTI) (Rayleigh 1883; Taylor 1950), where a finite acceleration causes an in-
terface to become unstable. These instabilities can lead to mixing of material interfaces
in inertial confinement fusion capsules (Lindl et al. 2004), the formation of supernova
remnants (Kane et al. 1999), and enhanced fuel-oxidizer mixing in supersonic combustion
(Marble et al. 1987).
The RMI starts with baroclinic production of vorticity, where a misalignment of the

pressure gradient, ∇p, at the shock front and the density gradient, ∇ρ, at the interface
will lead to vorticity (ω) production; Dω/Dt = (∇ρ×∇p) /ρ2. The perturbations grow
linearly until their amplitudes become comparable to their wavelengths. The interface
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can develop into a turbulent mixing layer if the initial perturbation contains a broad
range of scales and it is accelerated by a sufficiently strong shock.

Turbulent mixing requires a separation between the largest, energy-containing scales
and the smallest, dissipative scales. The controlling length scales are the Liepmann-
Taylor scale λL (related to the Taylor microscale) and the inner viscous scale λν (related
to the Kolmogorov scale) (Dimotakis 2000). The Liepmann-Taylor scale is effectively
the smallest scale generated by the largest eddies, while the inner viscous scale is the
scale where energy begins to be removed through viscous dissipation. Thus when λL >
λν , turbulent mixing is expected. In steady-state flows, these scales are related to the
Reynolds number through

λL = 5LRe−1/2 (1.1)

λν = 50LRe−3/4 , (1.2)

where L is the largest scale of the flow, which implies a transition Reynolds number of
Re = 1-2× 104.

For time-dependent flows like the RMI, the Reynolds number can exceed the turbulent
transition before the flow develops the scale separation necessary for turbulent mixing.
Robey et al. (2003) considered the case where the interface starts as a discontinuity and
therefore the Taylor microscale begins at zero. With the Taylor microscale growing with
time as λT ∝

√
νt, eventually it surpasses the viscous scales, marking a transition to

turbulence. In the experiments discussed here, a different scenario occurs: the Taylor
and viscous scales start at finite values set by the initial condition. After the shock
interaction, where additional energy is deposited in the layer, these scales evolve towards
their fully-developed values.

Previous works have observed evidence of turbulent mixing in shock tube experiments.
In a shock-accelerated gas curtain, Rightley et al. (1999) identified a turbulent transition
when the intensity histogram of planar post-shock images no longer showed a local peak
of unmixed fluid. Vorobieff et al. (1998, 2003) used second-order structure functions on
images from similar experiments to identify turbulent mixing. The power-law slope of
the structure function at late times was analogous to a k−5/3 spectrum in wavenumber
space. Recent work by Balakumar et al. (2012) used simultaneous density and velocity
measurements to study the turbulent behavior after a second shock wave interacted with
the layer. For single-interface RMI, Zhou et al. (2003) found that the single-mode exper-
iments of Jones & Jacobs (1997) and Collins & Jacobs (2002) approached the transition
limit at the latest times of their highest Mach number experiment, where the vortex
cores exhibited a chaotic structure. In an earlier subset of the present work (Weber et al.
2012), the shock-induced mixing layer appeared to be transitioning to turbulent mixing
at the latest observed time. For the present experiments, the shock tube test section was
extended to observe the mixing layer after this transition. Additionally, a higher Mach
number campaign was undertaken for a point of comparison.

In the experiments presented here, evidence for a transition to turbulent mixing of
the shock-accelerated mixing layer is inferred by a homogenization of the mole-fraction
probability density functions (PDFs) and the emergence of an inertial range in the scalar
energy spectra. The length scales are measured and found to separate with time. The
largest scale, the overall thickness of the mixing layer, initially grows linearly, the small-
est scale, the Batchelor scale, decreases in size, and the intermediate Taylor microscale
remains nearly constant. Coincident with the inferred turbulent transition, the Taylor
microscale and the Batchleor scale appear sufficiently separated to sustain an inertial
range. The paper begins with a description of the experimental setup, the initial condi-
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tion, and the image processing. The results section describes the structure of the mixing
layer as it evolves in time. Length scales are extracted from the mixing layer using several
methods and are finally used to estimate the Reynolds number.

2. Experimental Setup

The present experiments were performed at the Wisconsin Shock Tube Laboratory.
The shock tube is 9.1 m tall and has a 25.4×25.4 cm2 internal cross section. The 2.0
m driver section is separated from the rest of the shock tube by a steel diaphragm. Be-
fore each experiment, the driver section is pressurized to 85% of the diaphragm rupture
pressure. The remaining pressure is rapidly provided through two pneumatically driven,
fast-opening valves. The rupture of the diaphragm releases a shock wave into the atmo-
spheric pressure gas below. The distance between the diaphragm and the interface, 5.4
m, allows the shock wave to stabilize and become planar before interacting with the in-
terface. The bottom section of the shock tube contains ports for generating the interface
and windows for planar imaging. Four window ports are used in the present work. The
top-most window is positioned to view the initial condition and an early post-shock time.
Lower windows allow for later-time visualization. These windows are made of fused silica
and are 7.5 cm thick to withstand the dynamic loading by strong shock waves. The end
wall of the shock tube contains a rectangular window to transmit the laser sheets used
for flow visualization.
These experiments use a gas interface with a mixture of helium and acetone vapor

(6.0±0.8% by volume) above and pure argon below, giving an Atwood number of A =
(ρ2 − ρ1)/(ρ2 + ρ1) = 0.7. The flow of the helium-acetone mixture is split, routing a
portion to the top of the shock tube and the remaining to the interface section. First,
an initially flat interface is formed by flowing the helium-acetone mixture into the top of
the shock tube and argon into the bottom. Excess gas is evacuated through slots in the
shock tube wall at the interface location. These slots are connected to a pair of vacuum
pumps, ensuring a rapid outflow of gas. This method to create a flat, membrane-less
interface is similar to that developed for the University of Arizona shock tube (Jones &
Jacobs 1997) and used previously at the University of Wisconsin (Motl et al. 2009).
The flat interface is perturbed by injecting the pure argon and the helium-acetone

mixture horizontally through separate slots above and below the stagnation plane, re-
spectively, while maintaining the vertical flow started previously. This flow configuration,
shown in Fig. 1, was experimentally determined to provide the best initial condition in
terms of scale content and statistical repeatability. Perturbations form due to the buoy-
ant interaction between the two streams and from the shear stress between this mixed
layer and the pure argon. The superposition of the horizontal and vertical flows creates
a continual flow towards the interface, ensuring that all mixed gas is removed and the
mixing layer remains statistically steady in time.
Two excimer lasers (Lambda Physik LPX 210i, 308 nm, 470 mJ/pulse, 28 ns pulse) are

used for planar laser-induced fluorescence (PLIF) diagnostics. During each experiment,
ten pre-shock images are recorded prior to the arrival of the shock wave to obtain a
statistical description of the initial condition. To allow the laser to recharge and account
for variability in experimental timing, the last recorded initial condition occurs 150-200
ms prior to the shock arriving at the interface. A pressure transducer above the interface
is used to trigger the two lasers for two post-shock images based on the arrival of the
shock wave. The images are all recorded using three thermoelectrically cooled (to -60◦C)
Andor CCD cameras (model DV434-BU2).
Figure 2(a) shows a sample initial condition image, corrected so that the signal intensity
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Figure 1. Diagram of the interface location showing gas flowing from the top and bottom of
the shock tube and from the left set of slots. The right set of slots are connected to a vacuum
pump, removing excess gas. The edges of the planar laser sheet are shown as dashed lines and
the laser causes fluorescence in the acetone vapor in the top gas.
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Figure 2. Initial condition images. (a) A sample initial condition image, processed so intensity
corresponds to light-gas mole fraction. (b) Mole fraction ensemble average and (c) standard
deviation, σ, from 100 images

corresponds to acetone concentration, which is also directly proportional to the light-gas
mole fraction, ξ. In the image, the gases are injected from the left near z = 0 cm. The
injected stream of pure argon is visible as a dark horizontal band at z ≈ 0.5 cm. The
injected helium-acetone mixture is visible below the argon stream. Approximately 5 cm to
the right right of the injection location (feature A), the two gas streams begin mixing and
the individual streams are no longer apparent. Perturbations develop on the lower edge
of this mixing region due to the velocity difference of the mixture stream and the ambient
argon. The boundary between the mixed gas entering from the left and the helium-acetone
mixture entering from the top of the shock tube is identified as feature B. The gradient
at the top of the mixing region is diffuse and lacks noticeable perturbations. Between
the top contour (feature B) and the bottom shear surface (feature A), the average mole
fraction is ξ ≈ 0.6. The ensemble average and standard deviation from 100 images are
shown in Figs. 2(b) and (c). The most significant temporal fluctuations occur at the
bottom shear surface, where the light-gas mole fraction has a standard deviation of 0.2.
This initial condition is characterized further in Weber et al. (2012).
The interface is accelerated by an incident shock wave of strength M = 1.57± 0.02 or

M = 2.23± 0.02. At each Mach number, images from four post-shock times are obtained
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(termed: PS1-PS4). These post-shock times correspond to different shock-tube window
locations. Two post-shock images are obtained per experiment and a total of 20-40 images
were collected at each time over the course of the experimental campaign.
The PLIF images are processed to extract the light-gas mole fraction, ξ. The images are

processed using the knowledge that the top portion of the image contains pure seeded
(light) gas (ξ = 1). Integrating downward while accounting for the divergence of the
laser sheet, deviations from Beer’s law attenuation are attributed to mixing of unseeded
(heavy) gas or changes in temperature. The equation for this is

ξ =

T

T1

Sf

Sf,R − n1σφ

∫ R

r

Sf

φ
dr

, (2.1)

where Sf is the local fluorescence signal, Sf,R is the fluorescence signal at the top of the
image where it is assumed ξ = 1, T/T1 is the temperature ratio in relation to the pure
seeded region, n1σ is the product of number density and absorption cross section in the
pure seeded gas (this product is measured by the exponential signal variation in the top
of the image), and φ is the fluorescence quantum yield. The integral is carried out from
the local location r to the top of the image at location R. This process (without the
inclusion of temperature effects) is similar to that used by Collins & Jacobs (2002) and
Motl et al. (2009). Since the temperature is not known, it is assumed proportional to the
mole fraction,

T = T ′

2 + (T ′

1 − T ′

2)ξ , (2.2)

where T ′

1 and T ′

2 are the post-shock temperatures in the pure light and heavy gases,
respectively, calculated from 1D gas dynamics. With a Prandtl number near unity, this
approximation is expected to be accurate to first order, but it neglects higher order effects
such as shock focusing, which can lead to higher temperatures in localized regions. Since
the right side of Eq. (2.1) contains ξ in the relation for T , σ(T ), and φ(T ), this equation
is iteratively solved until a converged mole fraction field is found. Once the images have
been corrected, fine scale features remain due to refraction of light rays caused by index
of refraction gradients in the mixing layer. These features are removed through a 2D
spectral notch filter. This filtering process preserves the original spectrum when applied
to synthetic turbulent images (Weber 2012).
Some of the relevant gas properties are reported in Table 1. These are computed based

on the measured incident and transmitted wave speeds (Wi and Wt). Primes denote
post-shock quantities.

3. Experimental Results and Discussion

3.1. Structure of the Post-Shock Scalar Fields

Figures 3 and 4 show a sample of corrected PLIF images from the M = 1.6 and M = 2.2
experiments, respectively. The laser sheet in the late-time location, near the end wall of
the shock tube, is narrower than locations further from the end wall. Because of this, all
images in these figures are cropped to the PS4 width (14 cm). The first rows in each figure
show three initial condition images. In Fig. 3 the second, third, fourth, and fifth rows of
images are at post-shock times of 0.14 ms, 0.88 ms, 2.16 ms, and 3.84 ms, respectively.
The post-shock times in Fig. 4 are 0.10 ms, 0.44 ms, 1.12 ms, and 2.05 ms. Images in
the same column in rows four and five are from the same experiment, whereas all other
images are from different experiments.
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Table 1. Gas properties for the two Mach number cases. Primes denote post-shock quantities.
Gas 1 is the light gas (helium seeded with acetone) and gas 2 is the heavy gas (argon). V0 is the
post-shock interface velocity.

Mi 1.57 2.23
Mt 1.85 2.88
Wi (m/s) 1150 1576
Wt (m/s) 592 919
V0 (m/s) 315 606
Acetone (% Vol.) 5.6 6.5
ρ1 (kg/m3) 0.29 0.31
ρ2 (kg/m3) 1.63 1.63
ρ′1 (kg/m3) 0.69 1.19
ρ′2 (kg/m3) 3.48 4.79
T ′

1 (K) 497 761
T ′

2 (K) 557 1011
p′1 = p′2 (MPa) 0.40 1.01
A 0.70 0.68
A′ 0.67 0.60
(1− V0/Wi) 0.73 0.62
(ρ1/ρ

′

1 + ρ2/ρ
′

2) /2 0.44 0.30

The images show the large-scale extent of the mixing layer is growing, while the fluid
within the layer is becoming more mixed and turbulent (to be quantified later). The ear-
liest post-shock images seem to have features similar to those seen in the initial condition
images, but the gradients are somewhat sharper due to the compression from the shock
wave. At the PS2 time, the layer is dominated by several spikes of heavy gas (colored
black) penetrating into the mixed gas (colored blue and green). Coherent vortices are no-
ticeable at this time and the interface contours appear relatively smooth. Some chaotic
behavior (jagged contours and more mixing) occurs on the left side of the layer. The
slight left-right asymmetry is due to the flow in the initial condition, where the gases
are injected on the left side, leading to sharper gradients on the left than on the right.
Therefore, in some images the left side appears to transition to turbulence faster than
the right. By the PS3 time, the smoothness that appeared along the interface is gone and
many small-scale features are present. This trend continues into the PS4 time, where the
mixing layer appears to be in a fully-turbulent state (i.e. increased mixing and containing
a broad range of scales). Isolated regions in the PS3 images can be noticed where the
layer remains relatively smooth; these no longer exist by the PS4 time, where the full
layer appears engulfed by turbulence.

The similarities between the two Mach number images are remarkable given the ∼2×
difference in interface velocity. The post-shock image number (i.e. PS1, PS2, etc.) de-
notes the shock tube window used for the image and, between the two Mach numbers,
represents the same post-shock travel distance (Vot). Thus the post-shock travel distance
appears to qualitatively capture the turbulent evolution of the mixing layer. A few dif-
ferences are apparent between the two Mach numbers. The greater compression of the
M = 2.2 flow results in a thinner mixing layer at the same window location. The com-
position of the layer also appears different at the last two times, where there appears to
be more ξ = 0.75 fluid (yellow colors) in the M = 2.2 images.
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Figure 3. Selected images from M = 1.6 experimental sequence. First row: initial condition
images. Second row: PS1, 0.14 ms after shock interaction. Third row: PS2, 0.88 ms after shock
interaction. Fourth row: PS3, 2.16 ms after shock interaction. Fifth row: PS4, 3.84 ms after
shock interaction. The width of each image is 14.0 cm.

3.2. Mixing-Layer Thickness

The thickness of the mixing layer, h5−95, is defined as the distance between spanwise-
averaged mole-fraction values of 〈ξ〉 = 0.05 and 0.95, where

〈ξ〉 = 1

Lx

∫ Lx

0

ξ dx . (3.1)
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Figure 4. Selected images from M = 2.2 experimental sequence. First row: initial condition
images. Second row: PS1, 0.10 ms after shock interaction. Third row: PS2, 0.44 ms after shock
interaction. Fourth row: PS3, 1.12 ms after shock interaction. Fifth row: PS4, 2.05 ms after
shock interaction. The width of each image is 14.0 cm.

These values are shown in dimensional form in Fig. 5(a) from all of the experimental data.
Since these images show a two-dimensional slice from a three-dimensional layer, a large
amount of experimental variation is expected, and the average from the experiments,
shown as open circles, is of the most relevance. A weighted, least-squares regression is
used to calculate the initial linear growth rate at the earlier times. The inverse of the
number of images at that post-shock time is used as the weighting in the regression,
ensuring that the different times contribute equally despite having different numbers of
images. The growth rates from the PS1-PS2 data are ḣ5−95 = 24.2±1.6m/s and 35.4±7.3
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Figure 5. Mixing-layer thickness, h5−95. (a) Dimensional and (b) non-dimensional. Error bars
in (b) show the standard error of the mean. Curve fits in (b) show a linear fit (dashed) and a
power-law fit (dotted).

m/s for M = 1.6 and M = 2.2, respectively. The +/− value is the standard error in that
measurement. The growth rates between the PS2 and PS3 data are ḣ5−95 = 20.0± 2.1
m/s and 27.0± 4.1 m/s for M = 1.6 and M = 2.2, respectively, suggesting that the layer
has departed from its linear-growth stage within this time frame.
The non-dimensional mixing-layer thickness is shown in Fig. 5(b). The thickness af-

ter shock-compression, h′

0, and the initial growth rate of the mixing layer, ḣ0, provide
excellent collapse of the two Mach number data. Also shown is the line

h

h′

0

=
ḣ0

h′

0

t+ 1 (3.2)

and the power law

h

h′

0

= a

(

ḣ0

h′

0

t

)θ

. (3.3)

The power law fits the last three post-shock times with values of a = 1.98 ± 0.01 and
θ = 0.43 ± 0.01. This value of θ is in the upper range of previously reported values
(0.25 6 θ 6 0.5) in Dimonte & Schneider (1997); Prasad et al. (2000); Dimonte &
Schneider (2000); Jacobs et al. (2013).
Both h′

0 and ḣ0 were obtained from the linear fit to the PS1 and PS2 data, but these
values can be estimated a priori if their dependence on the initial conditions is known.
The compression of the layer by the shock wave is a complex process, but a simple ap-
proximation based on the pre- to post-shock density ratios, h′

0/h0 ≈ (ρ1/ρ
′

1 + ρ2/ρ
′

2) /2,
is within 10% of the measured values. One might expect the growth rate to behave
similar to the growth rate of mixing layers after reshock, where a second shock wave
interacts with the mixing layer. The interface prior to reshock in experiments like Vet-
ter & Sturtevant (1995) and Leinov et al. (2009) is characterized by a thickness that
contains, presumably, a broad distribution of perturbations interspersed within the layer
- comparable to the initial condition in the present experiment. Reshock experiments
found that the layer grows linearly after reshock and the growth rate is independent of
the pre-reshock initial conditions. The mixing-layer thickness after reshock appears to fit
the form of

h = CMA′V0t+ h0 , (3.4)

which was proposed by Mikaelian (1989) and fits a number of experiments (Read 1984;
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Youngs 1984; Vetter & Sturtevant 1995; Leinov et al. 2009) with CM ≈ 0.28 − 0.49.
Therefore the growth rate is ḣ = CMA′V0, which is in contrast to the growth rate of
a single-mode initial condition, which is proportional to the amplitude-to-wavelength
ratio. The effect of initial conditions can be investigated by looking at the ratio of initial
growth rates (i.e. between PS1 and PS2) from the higher and lower Mach number cases,
ḣM=2.2/ḣM=1.6 = 1.46± 0.32. If the growth rate were independent of initial conditions,
a ratio of (A′V0)M=2.2 / (A

′V0)M=1.6 = 1.72 would be expected. Alternatively, if the
growth rate were also proportional to the compressed interface thickness the ratio would
be 1.14. The compression due to density changes is not the only factor in the interface
compression. The differences in the incident shock wave velocity, Wi, and the post-shock
interface velocity will cause perturbations to decrease by a factor (1− V0/Wi). Using this,
a growth-rate ratio of 1.46 is expected, which is equal to the experimentally measured
ratio. This suggests that the interface perturbations still factor into the measured initial
growth rate.

3.3. Mixing-Layer Composition

The composition of the mixing layer is explored through probability density functions
(PDFs) of mole fraction. These are shown in Fig. 6 as a function of z-location within
the layer; darker colors represent an increased probability of mole fraction at a given
location. Note that integrating this two-dimensional PDF over ξ will result in 〈ξ〉, which,
by definition, is 〈ξ〉 = 0.5 or 0.95 at z/h5−95 = −0.5 or 0.5, respectively. The uncertainty
in these PDFs can be estimated from the region of uniform concentration. Due to shot
noise and uncorrected features in the laser sheet, the standard deviation in this region is
0.03 for the IC and 0.04 for the post-shock images.
The first row of Fig. 6 shows that the initial condition mole fraction gradually transi-

tions from ξ = 1 at the top of the mixing layer to ξ ∼ 0.4 near the bottom. This gradual
marching behavior is due to the diffusive spreading of the inlet jet, which, as seen in Fig.
2, does not contain large-scale inhomogeneities (Kelvin-Helmholtz features) aside from
the very bottom of the layer. The perturbations at the bottom of the mixing layer show
up as a wide region in the PDF, containing mole fractions between ξ = 0 and ξ = 0.4.
The second post-shock realization (second row) shows a PDF that has spread out over

a wider extent of mole fractions; nearly all of the mixing layer contains a finite probability
between ξ = 0 and ξ = 0.6. The transition between ξ = 0.6 and ξ = 1 is still confined
to the top of the mixing layer as the growing perturbations that began on the bottom of
the layer have not significantly influenced this region yet.
By the PS3 time, the perturbations have reached the top of the layer, entraining high

mole fraction gas and distributing it throughout the mixing layer. This is evident by the
ξ = 0.6 to ξ = 1 mole fraction now having a larger probability throughout most of the
mixing layer. By this time, the peak in the PDF of mixed fluid (ξ ∼ 0.4) is significantly
reduced in the M = 2.2 experiments.
At the latest time, the transition from ξ = 0 to ξ = 1 is more gradual than earlier

times, particularly in the M = 2.2 experiments. The peak near ξ ∼ 0.4 still exists at
the lower Mach number but is almost completely removed through mixing in the higher
Mach number experiments.
The evolution of PDF(ξ) within the full mixing layer (within 0.05 < 〈ξ〉 < 0.95) is

shown in Fig. 7 for the (a) M = 1.6 data and (b) M = 2.2 data. The PDFs show that
local peak near ξ ∼ 0.4 reduces over time and appears to mix with the lighter (ξ = 1)
fluid. This process occurs more rapidly in the M = 2.2 case and results in an increase in
the fluid near ξ ∼ 0.8. This bias for mixing of the lighter fluids has been noticed elsewhere
and is attributed to the greater inertia of the heavy fluid (Livescu & Ristorcelli 2008).
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from the (left) M = 1.6 experiments and (right) M = 2.2 experiments. The z-axis is normalized
by the 〈ξ〉 = 0.05 to 0.95 thickness, h5−95.

A metric describing the state of mixing can be constructed from the ratio of the
“thickness of mixed fluid” to the mixing layer thickness. Mixed fluid is defined following
Cook & Dimotakis (2001) as limited by the lesser component in a stoichiometric mixture,

ξm (ξ) = 2min (ξ, 1− ξ) , (3.5)

thus an equal mixture would have ξm = 1. With this definition, the mixing layer thickness
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is

hm =

∫

∞

−∞

ξm (〈ξ〉) dz, (3.6)

and is shown in Fig. 8(a) to be proportional to h5−95 (hm = 0.57h5−95). These defini-
tions of mixing-layer thickness do not differentiate between mixed gas and unmixed but
interpenetrating gas. These are compared in the following ratio:

Ξ =

∫

∞

−∞
〈ξm (ξ)〉dz

∫

∞

−∞
ξm (〈ξ〉) dz

, (3.7)

where the denominator is the same as Eq. (3.6) and the numerator averages after con-
verting the mole fraction field into a mixture fraction field. A fully homogenized fluid
without interpenetrating perturbations will have a ratio of Ξ = 1, while a discontinuous
interface with perturbations would have Ξ = 0. In these experiments this ratio, shown
in Fig. 8, begins near Ξ = 1 for both IC and PS1, signifying that the thickness of the
layer mostly comes from mixed fluid and not from perturbations. The ratio decreases at
all times in the M = 1.6 data, and decreases before bouncing back at the latest time in
the M = 2.2 data. Both Mach numbers reach a final value of 0.79, which is close to the
asymptotic value of 0.8 reported after the onset of turbulent mixing in Rayleigh-Taylor
simulations Cook et al. (2004).

3.4. Density Self-Correlation

An additional measure of fluid mixing and an important quantity for turbulence modeling
is the density self-correlation,

b = −
〈

ρ∗
(

1

ρ

)

∗
〉

, (3.8)

where asterisks denote spanwise variations, i.e. ρ∗ = ρ − 〈ρ〉. In the variable-density
Reynolds averaged equations, b appears in the production term for the mass flux and
requires modeling for closure (Besnard et al. 1992). One approach for closure is to make
a Boussinesq approximation (Grégoire et al. 2005), in which case b reduces to

b ≈
〈

ρ∗2
〉

〈ρ〉2
. (3.9)
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tḣ0/h′

0

Ξ

 

 

M = 1.6
M = 2.2
IC

(a) (b)

Figure 8. (a) Comparison of mixing layer thickness definitions, Eq. (3.6) vs h5−95. (b) Ratio
of the mixed fluid thickness to the mixing layer thickness, Eq. (3.7).

−0.75 −0.5 −0.25 0 0.25 0.5 0.75

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

 

 

IC

PS1

PS2

PS3

PS4

−0.75 −0.5 −0.25 0 0.25 0.5 0.75

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

 

 

IC

PS1

PS2

PS3

PS4

(a) (b)

Figure 9. Density self-correlation, b (right axis, solid), normalized density variance,
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/ 〈ρ〉2 (right axis, dashed), and mean mole fraction, 〈ξ〉 (left axis), (a) M = 1.6 and (b)
M = 2.2.

This approximation has been found adequate at modest Atwood numbers (Livescu et al.

2009; Ristorcelli et al. 2013).
Here the density field is approximated as

ρ = ρ′2 + (ρ′1 − ρ′2)ξ. (3.10)

Figure 9 shows the spanwise-averaged profile across the layer, 〈ξ〉 (left axis), b (right

axis, solid), and
〈

ρ∗2
〉

/ 〈ρ〉2 (right axis, dashed) for (a) M = 1.6 and (b) M = 2.2. The
compression of the layer by the shock wave reduces 〈ξ〉 in the interior of the layer (i.e. at
z/h5−95 = 0), which then increase as the layer evolves in time, but does not yet show a
self-similar profile at the latest two times. The density self-correlation at the first post-
shock time is similar to its value in the initial condition and both are much smaller than
at later times. At PS2 a large peak in the b profile appears near the lower density edge
of the layer. By the latest two times the peak is centered closer to the center of the layer
but the profile is still shifted towards the lower density side. In the M = 1.6 case, b is still
increasing through most of the layer between the latest two times, but in the M = 2.2
case b is decreasing by the latest time suggesting it is in a more well-mixed state. Aside
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from the late-time differences, the trends for the two Mach numbers are similar, but the
values for the lower Mach number case are 50% larger.
The values of b measure here are a factor of 2-3 times larger than those measured

in the gas-curtain RMI experiments (Balakumar et al. 2012) and in gas-channel RTI
experiments (Banerjee et al. 2010). This is likely due to the presence of unmixed spikes
in these experiments that protrude through the mixing layer even at late times. Despite
the large range of densities, the Boussinesq approximation,

〈

ρ∗2
〉

/ 〈ρ〉2, closely tracks the

trend observed in b. As noted by Livescu et al. (2009) for RTI simulations,
〈

ρ∗2
〉

/ 〈ρ〉2
tends to over-predict b on the low-density side of the layer and under-predict it on the
high density side.

3.5. Scalar Variance Spectra

The scale distribution of the mole fraction fields is reported here using one-dimensional
scalar variance energy spectra. The spectra are computed horizontally within the region
0.1 < 〈ξ〉 < 0.7. To reduce the influence of noise, an interlacing technique is used (Kaiser
& Frank 2007) where the Fourier coefficient, F (ξ(x)), is multiplied by the complex con-
jugate of the Fourier coefficient of the adjacent row,

E(kx) ≈ F (ξj(x))F
∗(ξj+1(x)). (3.11)

Since photonic shot noise is uncorrelated from pixel to pixel, and assuming neighboring
rows record a similar turbulence structure, the noise contribution tends towards zero
with an average of these interlaced spectra. The spectra were found to be converged with
10-20 images.
Figure 10 shows the spanwise 1D energy spectra for the five times from the (a) M = 1.6

and (b) M = 2.2 data. The spectra from the IC and PS1 lie very close to each other, as
would be expected given the very early time of PS1. Between PS1 and PS2 the magni-
tude of the spectrum increases, representing an increase in scalar variance. The spectra
of the last three times, PS2-PS4, are very similar, which is interesting given the visual
difference between the corresponding images in Figs. 3 and 4. The magnitude of the high
wavenumber region is increasing through the latest time. An apparent k−5/3 inertial
range is noticeable at the latest three times. This inertial range manifests for approxi-
mately a decade in wavenumbers before an exponential dissipation region is observed.
The compensated spectra are shown in 10 (c) and (d) for the M = 1.6 and M = 2.2 data,
respectively and show a region between 0.7 cm−1 and 7 cm−1 that is nearly flat, although
a slight negative slope appears present. A least-squares fit to the 1 cm−1 < k < 5 cm−1

region finds a E ∝ k−1.78 scaling for the PS4 data at both Mach numbers.

3.6. Turbulent Length Scales

In this section, turbulent length scales are measured from within the mixing layer. Of
primary interest are the Taylor microscale and the viscous scale, as their relationship
governs turbulent mixing. From these length scales, a Reynolds number is computed and
the turbulent transition is discussed.

3.6.1. Batchelor Scale

The inner viscous scale separates the inertial range from the dissipation range, but this
can be difficult to identify in an experimental spectrum. Instead, the spectrum can be
compared with a model velocity spectrum, where the relevant length scales are known
(Wang et al. 2007; Petersen & Ghandhi 2011). Pope (2000) proposed the following model
for 3D isotropic, homogeneous turbulence:

E3D (k) = Cp 〈ε〉2/3 k−5/3fL (kL) fη (kηk) , (3.12)
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Figure 10. One-dimensional scalar variance energy spectra, (a) M = 1.6 and (b) M = 2.2.

with a dissipation region

fη (kηk) = exp

(

−β

(

[

(kηk)
4
+ c4η

]1/4

− cη

))

. (3.13)

where ηk is the Kolmogorov length scale and β and cη are chosen to fit experimental
data. Pope found an excellent fit to a range of homogeneous, isotropic experimental data
with Cp = 1.5, β = 5.2, and cη = 0.4. Alternatively, the dissipation region is a simple
exponential when cη = 0, and β is constrained to β = 2.1 by requiring Eq. (3.12) to
integrate to the net turbulent kinetic energy and dissipation. The one-dimensional energy
spectrum is obtained through integration of the three-dimensional spectrum (Tennekes
& Lumley 1972)

E (k1) =

∫

∞

k1

k−1E3D (k) dk. (3.14)

The dissipation spectrum is related to the energy spectrum by D(k) = 2νk2E(k).
Using Pope’s model spectrum, one finds that the dissipation spectrum reaches 2% of its
peak at kηk = 1. Therefore, measuring the 2% dissipation level allows one to infer the
Kolmogorov scale. This requires a resolution of πηk. If sufficient resolution or signal level
is unavailable, it is possible to fit Pope’s model to the resolved portion of the spectrum
using ηk as a fitting parameter. In passive scalar turbulence, the smallest length scale is
the Batchelor scale, λB, which is related to the Kolmogorov length scale by the Schmidt
number (Sc = ν/D), λB = ηkSc

−1/2, where Sc ≈ 1 for gases.
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Figure 11. Dissipation spectrum from the latest post-shock time and model spectra, (a)
M = 1.6 and (b) M = 2.2.

The dissipation spectra from the PS4 data are shown in Fig. 11. Also shown are Pope’s
model and the exponential version of Pope’s model (i.e. cη = 0 in Eq. (3.13)) with ηk
adjusted to best-fit the experimental spectrum. Pope’s model appears to fall off more
sharply than the experimental data and a better-fit is observed at high wavenumbers by
the exponential model. Pope showed that his model matched the dissipation region of grid
turbulence and boundary layer data better than the other models, thus the disagreement
with Pope’s model also represents a disagreement with other experimental data. Also
shown in the figures is the point where the dissipation spectrum reduces to 2% of its
peak. The 1/k2% scale occurs at a wavelength of 2π/k2%, requiring a resolution of π/k2%
or ∼350 µm, which is approximately equal to the FWHM of the line-spread function, i.e.
approching the present experiments’ resolution limits.
An additional length scale based on the Batchelor scale - the dissipation layer thickness

- is computed as a comparison to the length scales computed from the dissipation spectra.
The scalar dissipation rate field, χ = D∇ξ · ∇ξ is observed consisting of sheet-like struc-
tures (Buch & Dahm 1996, 1998). These structures arise from the compressive action
of the strain rate, which stretches contour lines and increases the scalar gradients, and
the thickening action of diffusion. Thus an equilibrium exists where these forces balance,
resulting in a scalar dissipation length scale (Su & Clemens 2003)

λ20% = ΛλB. (3.15)

The proportionality constant Λ has been found to range from 2 - 14.9 (Wang et al. 2007;
Su & Clemens 2003; Buch & Dahm 1998) and may be flow-dependent. The ‘20%’ in Eq.
(3.15) refers to a method to measure this scale: the thickness where the dissipation rate
drops to 20% of its local peak.
To identify peaks in the dissipation rate field, a Canny edge detection algorithm (Canny

1986) is applied to the image of dissipation rate, which finds the local maxima of the
gradients. From these peaks, the dissipation rate in directions aligned with the local
gradient angle is computed through interpolation. The distance where the dissipation
rate drops to 20% of the local maximum is recorded as half the λ20% value. Points are
discarded if (i) the local dissipation rate maximum is less than a given threshold, (ii) the
dissipation rate does not decrease to 20% monotonically, (iii) the dissipation rate does
not decrease to 20% within a certain distance, or (iv) if a value for λ20% is not found on
both sides of a local maximum. An example of this calculation is shown in Fig. 12, where
the inset shows the dissipation rate and the detected λ20% lengths.
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Figure 13. PDFs of dissipation layer thickness, (a) M = 1.6 and (b) M = 2.2.

The probability distribution function of the dissipation layer thickness is shown in Fig.
13 for the different times and Mach numbers. There is a noticeable trend of decreasing
scales up until the last three post-shock times, where the PDFs all collapse to a similar
curve. The peak in the late-time PDFs is at 0.75 mm, which is∼5× the standard deviation
of the line spread function. From this resolution there is an estimated 25% error in the
dissipation length scale measurements at the late post-shock times (Wang & Clemens
2004). The trend of decreasing λ20% is notable despite the resolution limits. This scale is
compared to the Batchelor scale from the dissipation spectra in Fig. 14. A proportionality
constant of Λ ≈ 5 scales λ20% to λB at the last three post-shock times. This is within
the range of previously reported values for Λ (Wang et al. 2007; Su & Clemens 2003;
Buch & Dahm 1998). Also shown in Fig. 14 is the measured 1/k2% value. All of the
measurements show a trend of decreasing scale for the first three times (IC, PS1, and
PS2). The flattening out at the last three times may be a consequence of resolution
limitations.
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Figure 14. Batchelor and dissipation length scales, (a) M = 1.6 and (b) M = 2.2.

3.6.2. Taylor Microscale

The Taylor microscale is defined based on the curvature of the autocorrelation. The
scalar variance autocorrelation,

R (r) =
〈ξ∗ (x) ξ∗ (x+ r)〉

〈(ξ∗)2〉 , (3.16)

is symmetric, R(−r) = R(r), so the first terms in the Taylor series are

R (r) =1 +
1

2

d2R(0)

dr2
r2 (3.17)

=1− r2

λT
, (3.18)

where λT is the Taylor microscale. This scale can be calculated directly from the curvature
of the autocorrelation (Champagne et al. 1970; Ramaprabhu & Andrews 2004; Petersen
& Ghandhi 2011),

λT =

[

−1

2

d2R(0)

dr2

]−1/2

, (3.19)

or, equivalently, it can be calculated from the variance and the first-derivative

λT =













2
〈

(ξ∗)2
〉

〈

(

∂ξ∗

∂x

)2
〉













1/2

. (3.20)

Both methods are explored here.
From the cross-correlation theorem, the transform of the autocorrelation is equivalent

to the square of the magnitude of the Fourier transform of the single variable, in this
case ξ. The autocorrelation can then efficiently be computed through the inverse trans-
form, with appropriate normalization. We take advantage of this and use the interlacing
technique, Eq. (3.11), when computing the transform. This avoids some of the loss in
correlation that occurs due to noise. The effect of this is small, as shown in Fig. 15(a),
but it improves the calculation of the Taylor microscale, producing a curve that appears
more parabolic near the r = 0 point. The full autocorrelation is shown in Fig. 15(b)
in the horizontal and vertical directions. The horizontal autocorrelation, computed af-
ter subtracting the spanwise-averaged profile from the image, continues downward into



The turbulent mixing transition in the Richtmyer-Meshkov instability 19

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

r (cm)

a
co

rr
(r

)

 

 

Horizontal
Vertical (i)
Vertical (ii)

0 0.05 0.1 0.15 0.2
0.85

0.9

0.95

1

r (cm)

a
co

rr
(r

)

 

 

regular
w/ interlacing

(a) (b)

Figure 15. Autocorrelation examples; (a) horizontal, zoomed in to show interlacing technique
and (b) the full autocorrelation in the horizontal and vertical directions (using the two subtrac-
tion methods).

the negative region due to the presence of low wavenumber structures in the layer. The
vertical autocorrelation is computed in two ways: (i) subtracting the vertical average of
each column before calculating the autocorrelation and (ii) subtracting both the span-
wise average and the vertical average. These two methods are shown in Fig. 15(b). The
vertical autocorrelation computed using the first method, subtracting the vertical aver-
age, becomes inversely (negatively) correlated over large distances. This is because the
mole fraction goes from ξ = 0 in the bottom of the image to ξ = 1 in the top. This issue
is mitigated by also subtracting the spanwise averaged profile from the image, which
causes the autocorrelation to oscillate near zero at larger distances and is similar to the
horizontal curve at small distances.
The Taylor microscale is computed from the curvature of the autocorrelation curve at

r = 0. The chosen method is to fit a parabola to the central 7 points, i.e. the central
r = 0 point, the next three points, and the equivalent three points on the negative
r side of the autocorrelation. Using different numbers of points or using a second-order
central difference at r = 0 produces proportional results but appears to have more scatter
over the different experiments. As shown below, this 7-point fitting method gives similar
results to a different Taylor microscale calculation in the horizontal direction.
An alternate method for calculating the Taylor microscale, used in RTI simulations

(Ristorcelli & Clark 2004; Cabot & Cook 2006), is through the variance and the gradient,

λ2
T,x =

2
〈

(ξ∗)2
〉

〈

(

∂ξ∗

∂x

)2
〉 , λ2

T,z =
2
〈

(ξ∗)2
〉

〈

(

∂ξ∗

∂z

)2
〉 . (3.21)

The averaging is performed in the spanwise direction for both the horizontal and vertical
directions. The results are compared in Fig. 16, where ‘acorr’ refers to the parabolic fit
to the autocorrelation and ‘var’ refers to the variance/gradient method, Eq. (3.21). The
two methods produce similar results in the horizontal direction, with a magnitude near
4 mm and little change in the last three post-shock times. In the vertical direction there
is nearly a factor of two difference between the two methods for some of the post-shock
times. Both methods start with a vertical Taylor microscale that is smaller than the
horizontal scale. In the variance-based method, the scale appers to be slightly larger
than the horizontal scale by the latest time, while the autocorrelation-based method
produces a vertical scale that stays below the horizontal scale. The expected evolution
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of the layer supports the trend observed in the variance-based method. (i) The vertical
scales should start smaller than the horizontal scales due to the shock-compression of the
layer. (ii) In time, simulations of RTI and RMI turbulence note a persistent anisotropy
with larger vertical Taylor microscales (although based on the velocity, not on scalars)
(Cabot & Cook 2006; Lombardini et al. 2012). For these reasons, the variance-based
method is used in the following discussion.

3.7. Length Scales and Reynolds Number Discussion

Some of the length scales previously discussed are summarized in Fig. 17. A picture of
scale separation emerges from this figure, with the largest scale, h5−95, getting larger,
the smallest scale, λ20% and λB , getting smaller, and the intermediate scale, λT , staying
approximately the same or slightly increasing.

The Reynolds number can be measured from the Batchelor and Taylor scales. From
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the ratio of their Reynolds number dependence (Eqs. (1.1) and (1.2)),

λT

λB
=

2.3LRe−1/2

LRe−3/4
, (3.22)

the outer-scale Reynolds number is

Re ≃ 1

28

(

λT

λB

)4

. (3.23)

This is computed and shown in Fig. 18. Curves are shown for each Mach number and
separate calculations of Eq. (3.23) are made using the Batchelor scale from the 1/k2%
value and from the fit to Pope’s model spectrum. The horizontal Taylor microscale,
calculated using Eq. (3.21), is used. Also shown in Fig. 18 is a definition for outer-scale
Reynolds number commonly used in RMI and RTI computational studies,

Re =
hḣ

ν
. (3.24)

Here this equation is evaluated using the linear and power-law curve-fits from Fig. 5(b).
Using the length scales and Eq. (3.23), the Reynolds number grows by two orders of

magnitude throughout the experiment. Using the 1/k2% value for the Batchelor scale,
the turbulent transition (shown in as a horizontal gray band in Fig. 18) is passed near
the second post-shock time. A final Reynolds number of 5.7×104 and 7.2×104 is reached
at the latest time in the M = 1.6 and M = 2.2 experiments, respectively. The Reynolds
number based on the Batchelor scale from fitting Pope’s model spectrum is considerably
smaller and does not predict that a transition to turbulent mixing would be passed. These
differences highlight the error amplification that occurs in Eq. (3.23) due to the power
of 4 involved. But both calculations exhibit the same trend, with a Reynolds number
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Figure 19. The estimated initial vorticity field from a M = 1.6 experiment. The vortex
Reynolds number of several vorticies are noted.

increasing in time due to increased scale separation as the mixing layer develops. The
Reynolds number using the 1/k2% value quantitatively agrees with the conclusions of
the mole fraction PDFs and the spectra, where a transition to turbulence appeared to
occur near the second post-shock time. The Reynolds number based on hḣ/ν is much
larger than the other estimates and does not capture the transition that occurs during
the experiment. This is not expected to be an accurate measure for Re, at least in the
development stage of the current experiments. A thicker initial value of h will increase
the hḣ/ν measurement without adding additional momentum to the layer.
A final estimate of the Reynolds number can be made using a model of vorticity

deposition on the interface and compared to the values in Fig. 18. Assuming an impulsive
acceleration to a velocity V0, the out-of-plane vorticity deposition on the interface is
(Weber et al. 2013)

ωy ≈ −V0

ρ

∂ρ

∂x
, (3.25)

where ρ is the compressed, post-shock density field. This vorticity model is applied to
a PS1, M = 1.6 image, which is taken immediately after shock compression where it
is expected that little amplitude growth has occurred. Figure 19 shows the deposited
vorticity approximation, using Eqs. (3.25) and (3.10).

From Fig. 19, the initial post-shock layer appears to be composed of coherent rings
and tubes of vorticity. A vortex ring in isolation becomes turbulent and breaks apart
when its vortex Reynolds number is larger than 2.5× 104 (Glezer 1988). Vortex tubes in
this layer will experience similar dynamics, complicated by interactions with neighboring
vorticies, thus it is appropriate to measure vortex Reynolds number within this layer.
The vortex Reynolds number is defined as

ReΓ =
Γ

ν
(3.26)

where Γ is the circulation of the vortex core.
Vortex cores can be identified in the vorticity field by isolating regions where the

vorticity magnitude is above a certain threshold and integrating the vorticity, Γ =
∫

ω da,
within this region. Several vortex cores are outlined in Fig. 19 and their corresponding
vortex Reynolds number are noted. This method finds a number of vorticity regions that
are above the turbulent threshold, with a maximum of ReΓ = 8.6 × 104. This value
is similar to that measured using the Taylor/Batchelor scale ratio. Thus the Reynolds
number assembled from the measured turbulence scales appears to support the other
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analyses of the PLIF images, showing a turbulent transition by the third post-shock
time.

4. Conclusions

The turbulent mixing that results from the Richtmyer-Meshkov instability was studied
using a unique shear-layer initial condition and quantitative PLIF imaging. After accel-
eration by a M = 1.6 or M = 2.2 shock wave, the mixing layer is initially dominated by
the growth of large-scale spikes and bubbles, but these structures eventually break apart
into smaller scales, leading to molecular mixing and scale separation that is indicative of
a turbulent transition. The two Mach numbers seem to evolve similarly when compared
at the same interface travel distance.
The mole fraction PDFs and spectra provide evidence for turbulent mixing at late

times. The PDFs show three peaks, two representing the unmixed fluids and one repre-
senting the mixed fluid that is present in the initial condition. The central peak in the
PDF reduces in time and disappears by the latest time at the larger Mach number. This
intermediate fluid and the light fluid are observed mixing to produce ξ ∼ 0.8 fluid. The
scalar variance energy spectra appear to be fully developed by the last two times and
exhibit an inertial range close to k−5/3.
Several length scales from within the mixing layer are measured and provide a clear

picture of the scale separation that causes the turbulent transition. The large scale extent
of the mixing layer is found growing linearly early on and then as t0.43 by the end of the
experiment. The smallest length scale, the Batchelor scale, reduces from its initial condi-
tion value and reaches 100 - 250 µm, depending on the technique used. The intermediate
scale, the Taylor microscale, shows early-time anisotropy caused by the shock wave and
then stays near 4 mm for the latter three post-shock times.
The ratio of the Taylor to Batchelor scale is used to compute the Reynolds number.

This Reynolds number is growing in time and crosses the turbulent transition threshold
near the second post-shock time, eventually reaching 6−7×104. This result is dependent
on the method used for measuring the Batchelor scale, but the 1/k2% appears to support
the results of the PDF and spectral analysis. This Reynolds number is similar to the
vortex Reynolds number through an estimate of the initial baroclinic vorticity.
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